21 research outputs found

    Safety-centric and Smart Outdoor Workplace: A New Research Direction and Its Technical Challenges

    Full text link
    Despite the fact that outside is becoming the frontier of indoor workplaces, a large amount of real-world work like road construction has to be done by outdoor human activities in open areas. Given the promise of the smart workplace in various aspects including productivity and safety, we decided to employ smart workplace technologies for a collaborative outdoor project both to improve the work efficiency and to reduce the worker injuries. Nevertheless, our trials on smart workplace implementation have encountered a few problems ranging from the theoretical confusion among different stakeholders, to the technical difficulties in extending underground devices' lifespan. This triggers our rethinking of and discussions about "smart workplace". Eventually, considering the unique characteristics of outdoor work (e.g., more sophisticated workflows and more safety-related situations than office work), we argue that "safety-centric and smart outdoor workplace" deserves dedicated research attentions and efforts under the umbrella discipline of smart environment. In addition, the identified technical challenges can in turn drive different research dimensions of such a distinguishing topic.Comment: 14 page

    Development of hybrid metaheuristics based on instance reduction for combinatorial optimization problems

    Get PDF
    113 p.La tesis presentada describe el desarrollo de algoritmos metaheurísticos híbridos, basados en reducción de instancias de problema. Éstos son enfocados en la resolución de problemas de optimización combinatorial. La motivación original de la investigación radicó en lograr, a través de la reducción de instancias de problemas, el uso efectivo de modelos de programación lineal entera (ILP) sobre problemas que dado su tamaño no admiten el uso directo con esta técnica exacta. En este contexto se presenta entre otros desarrollos el framework Construct, Merge, Solve & Adapt (CMSA) para resolución de problemas de optimización combinatorial en general, el cual posteriormente fue adaptado para mejorar el desempeño de otras metaheurísticas sin el uso de modelos ILP. Los algoritmos presentados mostraron resultados que compiten o superan el estado del arte sobre los problemas Minimum Common String Partition (MCSP), Minimum Covering Arborescence (MCA) y Weighted Independent Domination (WID)

    Development of hybrid metaheuristics based on instance reduction for combinatorial optimization problems

    Get PDF
    113 p.La tesis presentada describe el desarrollo de algoritmos metaheurísticos híbridos, basados en reducción de instancias de problema. Éstos son enfocados en la resolución de problemas de optimización combinatorial. La motivación original de la investigación radicó en lograr, a través de la reducción de instancias de problemas, el uso efectivo de modelos de programación lineal entera (ILP) sobre problemas que dado su tamaño no admiten el uso directo con esta técnica exacta. En este contexto se presenta entre otros desarrollos el framework Construct, Merge, Solve & Adapt (CMSA) para resolución de problemas de optimización combinatorial en general, el cual posteriormente fue adaptado para mejorar el desempeño de otras metaheurísticas sin el uso de modelos ILP. Los algoritmos presentados mostraron resultados que compiten o superan el estado del arte sobre los problemas Minimum Common String Partition (MCSP), Minimum Covering Arborescence (MCA) y Weighted Independent Domination (WID)

    Construct, Merge, Solve & Adapt A new general algorithm for combinatorial optimization

    Get PDF
    [EN]This paper describes a general hybrid metaheuristic for combinatorial optimization labelled Construct,Merge, Solve & Adapt. The proposed algorithm is a specific instantiation of a framework known from theliterature as Generate-And-Solve, which is based on the following general idea. First, generate a reducedsub-instance of the original problem instance, in a way such that a solution to the sub-instance is also asolution to the original problem instance. Second, apply an exact solver to the reduced sub-instance inorder to obtain a (possibly) high quality solution to the original problem instance. And third, make use ofthe results of the exact solver as feedback for the next algorithm iteration. The minimum common stringpartition problem and the minimum covering arborescence problem are chosen as test cases in order todemonstrate the application of the proposed algorithm. The obtained results show that the algorithm iscompetitive with the exact solver for small to medium size problem instances, while it significantlyoutperforms the exact solver for larger problem instancesC. Blum was supported by project TIN2012-37930-02 of the Spanish Government. In addition, support is acknowledged from IKERBASQUE (Basque Foundation for Science). J.A. Lozano was partially supported by the IT609-13 program (Basque Government) and project TIN2013-41272P (Spanish Ministry of Science and Innovation)Peer reviewe

    Rovibronic signatures of molecular aggregation in the gas phase: subtle homochirality trends in the dimer, trimer and tetramer of benzyl alcohol.

    Get PDF
    [EN]Molecular aggregation is of paramount importance in many chemical processes, including those in living beings. Thus, characterization of the intermolecular interactions is an important step in its understanding. We describe here the aggregation of benzyl alcohol at the molecular level, a process governed by a delicate equilibrium between OHMIDLINE HORIZONTAL ELLIPSISO and OHMIDLINE HORIZONTAL ELLIPSIS pi hydrogen bonds and dispersive interactions. Using microwave, FTIR, Raman and mass-resolved double-resonance IR/UV spectroscopic techniques, we explored the cluster growth up to the tetramer and found a complex landscape, partly due to the appearance of multiple stereoisomers of very similar stability. Interestingly, a consistently homochiral synchronization of transiently chiral monomer conformers was observed during cluster growth to converge in the tetramer, where the fully homochiral species dominates the potential energy surface. The data on the aggregation of benzyl alcohol also constitute an excellent playground to fine-tune the parameters of the most advanced functionals.The Gottingen part of the project was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 271107160/SPP1807. We thank M. Lange and E. K. M. M. Sennert for the measurement of the FTIR spectrum and E. Meyer for help with the measurement of the Raman spectrum. Computational resources from the GWDG and the Gottingen Faculty of Chemistry (DFG - 405832858/INST 186/1294-1 FUGG) are acknowledged. We thank the Gottingen chemistry workshops for valuable support. This publication was supported financially by the Open Access Grant Program of the DFG and the Open Access Publication Fund of the University of Gottingen. The Bilbao and Valladolid groups acknowledge funding from the Spanish Ministerio de Ciencia e Innovacion (MICINN-FEDER PGC2018-098561-B-C21 and PGC2018-098561-B-C22). Bilbao's group also thank the SGIKER (UPV/EHU, MICIU-FEDER) for the computational and laser resources. The Hamburg part of this work was financially supported by the Deutsche Forschungsgemeinschaft (SCHN1280/4-2, project number 271359857) in the context of the priority program SPP 1807 "Control of London dispersion interactions in molecular chemistry". P. Pinacho would like to thank the Alexander von Humboldt Foundation for a postdoctoral fellowship

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (bodymass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Barrakuda: A Hybrid Evolutionary Algorithm for Minimum Capacitated Dominating Set Problem

    No full text
    The minimum capacitated dominating set problem is an NP-hard variant of the well-known minimum dominating set problem in undirected graphs. This problem finds applications in the context of clustering and routing in wireless networks. Two algorithms are presented in this work. The first one is an extended version of construct, merge, solve and adapt, while the main contribution is a hybrid between a biased random key genetic algorithm and an exact approach which we labeled Barrakuda. Both algorithms are evaluated on a large set of benchmark instances from the literature. In addition, they are tested on a new, more challenging benchmark set of larger problem instances. In the context of the problem instances from the literature, the performance of our algorithms is very similar. Moreover, both algorithms clearly outperform the best approach from the literature. In contrast, Barrakuda is clearly the best-performing algorithm for the new, more challenging problem instances.This work was supported by project CI-SUSTAIN funded by the Spanish Ministry of Science and Innovation (PID2019-104156GB-I00)

    A Population-Based Iterated Greedy Algorithm for Maximizing Sensor Network Lifetime

    No full text
    Finding dominating sets in graphs is very important in the context of numerous real-world applications, especially in the area of wireless sensor networks. This is because network lifetime in wireless sensor networks can be prolonged by assigning sensors to disjoint dominating node sets. The nodes of these sets are then used by a sleep-wake cycling mechanism in a sequential way; that is, at any moment in time, only the nodes from exactly one of these sets are switched on while the others are switched off. This paper presents a population-based iterated greedy algorithm for solving a weighted version of the maximum disjoint dominating sets problem for energy conservation purposes in wireless sensor networks. Our approach is compared to the ILP solver, CPLEX, which is an existing local search technique, and to our earlier greedy algorithm. This is performed through its application to 640 random graphs from the literature and to 300 newly generated random geometric graphs. The results show that our algorithm significantly outperforms the competitors.Peer reviewe

    The weighted independent domination problem: Integer linear programming models and metaheuristic approaches

    No full text
    This work deals with the so-called weighted independent domination problem, which is an NP-hard combinatorial optimization problem in graphs. In contrast to previous work, this paper considers the problem from a non-theoretical perspective. The first contribution consists in the development of three integer linear programming models. Second, two greedy heuristics are proposed. Finally, the last contribution is a population-based iterated greedy metaheuristic which is applied in two different ways: (1) the metaheuristic is applied directly to each problem instance, and (2) the metaheuristic is applied at each iteration of a higher-level framework – known as construct, merge, solve and adapt – to sub-instances of the tackled problem instances. The results of the considered algorithmic approaches show that integer linear programming approaches can only compete with the developed metaheuristics in the context of graphs with up to 100 nodes. When larger graphs are concerned, the application of the populated-based iterated greedy algorithm within the higher-level framework works generally best. The experimental evaluation considers graphs of different types, sizes, densities, and ways of generating the node and edge weights. © 2017 Elsevier B.V.This work was supported by project TIN2012-37930-C02-02 (Spanish Ministry for Economy and Competitiveness, FEDER funds from the European Union). Jose A. Lozano is supported by BERC program 2014-2017, IT609-13 (Basque Government) and Severo Ochoa Program SEV-2013-0323, TIN2016-78365-R (Spanish Ministry of Economy and Competitiveness).Peer Reviewe
    corecore